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ABSTRACT. Suffering from getting trapped in local optimum, researchers have developed
numerous versions of particle swarm optimization (PSO) to prevent premature
convergence. A personal-best information guided particle swarm optimization is
proposed in this paper. Firstly, the global version and the local version of personal-best
terms are defined to balance the exploration and exploitation and the modified cognition
component is formed with a chosen strategy of the two terms. And then the original
cognition component is replaced by the modified cognition component. The performance
of the proposed algorithm is evaluated on ten benchmark functions and compares with
some well-known PSO variants. Simulation results indicate that the proposed algorithm
has statistically superior performance than other PSO variants.
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1. Introduction. Particle swarm optimization (PSO) is a stochastic, population-based
optimization technique introduced by Kennedy and Eberhart in 1995 [1-2] and has
numerous applications in data clustering problem [3-5], vehicles scheduling problem [6-9],
economic and emission dispatch problem [10, 11] and so on. Das and Pattnaik et al. applied
particle swarm optimization (PSO) to train Artificial Neural Network (the number of layers,
input and hidden neurons, the type of transfer functions etc.) for the channel equalization
[12]. Salim and Nabag et al. presented a study of particle swarm optimization (PSO) to
identify the offline parameters of the Nexa 1.2 kW proton exchange membrane fuel cell
(PEMFC) system [13]. After the optimal modeling strategy of solid oxide fuel cell (SOFC)
is designed, Jiang and Wang et al. developed a simple and efficient barebone particle
swarm optimization (BPSO) algorithm to determine the parameters of SOFC. For improve
the performance, a hybrid learning strategy is proposed for BPSO and used to the SOFC
model [14].

But in the complicated system, the applications of particle swarm optimization in these
problems often trapped in local optima. On the purpose of efficiently avoiding premature
stagnation, researchers developed many novel techniques to modify particle swarm
optimization. In recent years, PSO with different topology strategies and new techniques
has received increasing attention. Time-adaptive topology [16], increasing topology
connectivity [18] and scale-free topology [19] have different optimization process and were
employed into the PSO [16, 18, 19]. New techniques from other fields, such as competitive
and cooperative [23] and orthogonal design [24], were developed in particle swarm
optimization to overcome its weaknesses. Social learning mechanism from the society
behavior was also introduced into particle swarm optimization (SL-PSO) by Cheng and Jin
[7]. Lim and Isa also developed a two learning phases (teaching and peer-learning phases)
PSO (BTPLPSO) [10] to obtain better solution.

In this paper, a novel personal-best information guided PSO algorithm is proposed. In
this strategy, personal-best positions guided term with weighted sum of all particles'
personal-best positions is adopted. Then the global version and local version of this term is
defined. After that, the modified cognition component is formed by the two terms. Finally,
the original cognition component in velocity update process is replaced by modified
cognition component in the basic PSO and LPSO algorithm. The global version term and
the local version term have different abilities between the exploration and exploitation and
both used to guide particles. Therefore, to make use of information from personal-best
positions can achieve a good tradeoff between the exploration and exploitation and
effectively improves the PSO performance.

The remainder of this paper is organized as follows: section 2 introduces the detail of
PSO algorithm. Section 3 describes the implementation of particle swarm optimization
using mean personal-best information guided strategy strategy. The simulation results and
analysis of the proposed algorithm is shown in section 4. A conclusion is finally given in
section 5.
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2. Particle swarm optimization.

2.1. Velocity and position update. Particle swarm optimization can search the optimal
solution for the specific issue by updating the particle velocity and position. Suppose n
particles and m dimensions. Then the position vector and velocity vector of particle i can
be donated as v, =(v,,v,,...,v,,) and x =(x,,x,,....x,) . The personal-best position of
particle i is indicated as p,., = (Pyuis Pisesisrs Pes) - Lh€ global-best position is
indicated as g, =(g,.,,»Zpur2o-Zhen) - EaCh particle updates the velocity v;" according
to the current velocity and the distance from p,  and g, . The velocity and position is

manipulated according to the followings:

t+1

t t t t t
v, =@v;t+ch (pibest,/' - x!.].) +ern (gbest,j -x;) (1)

1+1
Xij

where o is inertia weight. ¢, ¢, are the cognitive and social component acceleration

t+1

ot
x4, @

coefficients. ¢ is the current iteration number. 7, r are random value in [0 1]. Inertia

weight o is a vital parameter which extremely affects the performance of PSO. Linearly
decreasing inertia weight is a typical option for solving wide varieties of problems and is

manipulated by the following equation:
t

wo=0_ —(o
Iter,

max max a)min )

(€))

where o, and e, is the minimum and maximum value. Irer,, is the maximum

max max

and o are 0.9 and 0.4 [25]. The stop

min max

iteration number. The advised value of

criterion is that a satisfactory solution is found or the maximum iteration number is met.

3. Personal-best information guided particle swarm optimization (PIGPSO).

3.1. Theory of algorithm. The personal-best particles carry useful information for the
optimization problem and influence the decision where the particles will make to move.
Making use of the information is able to correct some particles' error decision. Therefore,
the personal-best information guided strategy may have more opportunities to correct the
misguided particle. In next section, particle swarm optimization using personal-best
information guided strategy will be presented in details.

3.2. The detail of personal-best information guided strategy.
Step 1: Find the best and the worst fitness of personal-best positions.
Among all the personal-best positions, the best and the worst fitness should be firstly
found:
S =min{f, }i=12,..n )
Som = max{pr yi=1,2,..,n; (5)
where f,  is the personal-best fitness of particle i; .. , f,. represents the best and

the worst fitness among all the personal-best positions. » represents the total number of
particles.
Step 2: Normalize the personal-best fitness.
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In this step, the work is to normalize the personal-best fitness according to the following
equations:

Joas =1,
pi — DPipest (6)
f max .fmin

p, 1s the normalize the personal-best fitness of the particle ;.

Step 3: Calculate the proportion of the personal-best fitness of the particle i . Donate
the proportion as » and r should be calculated by the following pseudo-code.

Algorithm 2 Calculate 7, pseudo-code

01: begin

02: for i=1 to n

03: it f._=f.

04: r=1/n;

05: else

06: r=p1Yp,
07: end

08: end

09: end

Step 4: All personal-best positions guided term a, ,; .
In order to obtain the term a,,,; , the global version f,; and local version g, of

personal-best positions guided term should be calculated. By weighted sum of all
personal-best positions, the global version «f,, 1is calculated:

af g = D1 (Pt = %) 7
i=1

where af,, represents the global version of personal-best positions guided term of the

particle i. By using parts of personal-best positions, the local version of personal-best
positions guided term 4/, should be calculated by the following pseudo-code. Set the

control parameter of local version as K . Then the topology size of local version is 2K +1.

1
i,PIG

Algorithm 3 The pseudo-code of «a

01: begin

02: Initialize the local size K .

03: Sort the personal-best fitness of all particles.

04: for i=1 to n

05: Join =min{f, } k=(@{-K):(+K);
06: Jow =max{f, } k=@{-K):(i+K);
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Fows =S

07: D, =
fmax - fmin
08: lf fmax == fmin
09: r=1/2*K+1);
10: ail,PIG = Zri(pibesz - le)
i=1
11: else
12: if i-K<0
2*¥K+1
=D / Z p;
j=1
; 2*¥K+1
t
13: ai,PlG = z rj(pjbest - xj)
Jj=1
14: elseif i—-K>0 | i+K<n
i+K
15 r=nl S b,
j=i-K
; i+K
t
16: a; pig = Z r; (p_,'bm —x_].)
j=i-K
17: elseif i+K>n
15 r=nl 3 b,
jei-2*K
19: ail,PlG = Z 7 (p/best _x‘t,-)
J=i-2%K
20: end
21: end
22: end
23: end

The global version term af,,, and the local version term a, ,, of the particle i have

different abilities between the exploration and exploitation. Therefore, the two terms are
both used to guide some particles and after the two terms are acquired, personal-best

information guided strategy g, ,,;, should be calculated by the following pseudo-code.

Algorithm 4 The calculation of 4, ,. pseudo-code

01: begin

02: for i=1 to n

03: if rand <0.5

04: 4 pi = ail,PIG
05: else

06: A pi = A pig
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07: end
08: end
09: end

Step 5: Modify velocity update equation.
For basic PSO and LPSO algorithm, the original cognition component in velocity update
equation will be replace by mean personal-best information guided term a, ,,; . Therefore,

PIG-PSO algorithm and PIG-LPSO algorithm are formed. The modified velocity update
equation is as follows:

t+1
V.

i

The flowchart of PIG-PSO algorithm is shown in Fig.1.

u t t t
v, +randea; . +corand«(g,,, ;, —x;) ®)

BEGIN
Initialize the positions and velocities, Evaluate fitness of particle and update the
and find Pipes and Lpene Piest and et
y v . .
Calculate the global version and local version Calculate the global version and local version
Of fruin> Souax» P @nd 7; . Then compute of fruin frax> P: and ;. Then compute
afpe and af i Of each particle and obtain afpe and o rig Of e@ch particle and obtain
a, pig by Algorithm 4 % pic by Algorithm 4
t=1
Y T _— —
Update the velocity and position of each particle : N ///// T
< Is the stopping criteri 7
vy = v + O g+ €, (8l s — %) \i ~ R RGREEEE Iie////
x;l — x; + V;l \\\\ e
| v
END

FIGURE.1 THE FLOWCHART OF PIG-PSO ALGORITHM-

4. Experiments and results.
4.1. Test benchmark functions. In this section, ten well-known benchmark functions
[26-29] are used to test the performance of the proposed algorithms. All benchmark
functions have one single global optimum. The expressions are shown as follows and the
dimensions, admissible range of the variables and the optimal value of the benchmark
functions are summarized in Table 1.

1. Sphere Model (unimodal function)

=2

2. Schewefel’s Problem 1.2 (unimodal function)
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)= i[ix,}z

3. Schewefel’s Problem 2.21 (unimodal function)
fi(x)=max{x|,1<i< n}

4. Generalized Griewank Function (multimodal function)

) 1 n 2 n ’
£(x) :m;xi —Hcos(%)+1

i=1

5. Rotated Rastrign Function (multimodal function)
fi(x)= i[yf —10cos(27y,) + IOJ,y =M xx

6. Rotated Rosenbrock Function (multimodal function)
Js(x) :i[IOO(in —yM)z +(» —l)ﬂ,y =M xx

7. Rotated Elliptic Function (unimodal function)
£@=200)""" 32y = M

8. Shifted Schewefel’s Problem 2.21 (unimodal function)
fs(x):max{‘y,. ,1§i$n}+fbias8,y:x—o
where  fbias, =—450.

9. Shifted Rotated Ackley’s Function (multimodal function)

1 n ] n
f,(x)= —ZOCXp[—O.Z =2z J - eXp(Zcos 27rzl) +20+e+ fbias,
N nic

where  fbias, =—140,z=(x—0)xM'
10. Shifted Rotated Weierstrass Function (multimodal function)

kmax k max

o) = Zn:[ > [a" cos(27rbk (z+ 05))}) -ny, [ak cos(27zbk x 0.5)} + fbias,,

where  a=0.5,b=3,kmax =20, fbias,, =90,z =(x—0)xM'

TABLE 1. SPECIFICATION OF THE 20 BENCHMARK FUNCTIONS

Function D Search range Suin
£i(x) 20/50 [-100, 1007° 0
f(x) 20/50 [-100, 100]P 0
(%) 20/50 [-100, 100]P 0
fi(x) 20/50 [-600 ,600]P 0

S (x) 20/50 [-5.12,5.12]P 0
Jo(x) 20/50 [-100, 100]P 0
f(x) 20/50 [-1.28,1.28]P 0
fo(x) 20/50 [-100, 100]P -450
£5(x) 20/50 [-32,32]° -140
Ju(¥) 20/50 [-0.5,0.5]P 90

4.2. Experimental settings.

4.2.1. Comparison of PIG-PSO and PIG-LPSO with basic PSO and LPSO. For the
basic PSO, LPSO, PIG-PSO and PIG-LPSO algorithms in the experiment, several
parameters are set the same. The maximum iteration number sets as 5000. Population size
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sets as 30. ¢, and ¢, aresetto2,and ¢ in PIG-PSO and PIG-LPSO algorithms are also

set to 2. The inertia weight » in PSO and PIG-PSO algorithms is 0.7, and is linearly
decreased from 0.9 to 0.4 in LPSO and PIG-LPSO algorithms. The experiment is
conducted on MATLAB 2011la and tests on ten benchmark functions with 20, 50
dimensions. We did 50 independent trials to avoid stochastic error and the results of
average best fitness (ABF), median best fitness (MBF) and standard deviation (SD) with 20,
50 dimensions are shown in Table 2, 4. The rank, average rank and final rank of average
best fitness are also shown in Table 2, 4.

Wilcoxon's rank sum test is method to determine two algorithms are statistically different
or not and returns three value, p—value, h-value and zval . Significance level is set to
0.05, which indicates that the hypothesis is accepted with 95% certainty. If p—value is
larger than 0.05, then 4 -value 1is equal to zero, which indicates that two results are not
statistically different. Otherwise, the value of % -value is equal to 1 or -1 which indicates
they are statistically different. 4 -value=1 indicates that our algorithm is better than the
compared algorithm in statistics. The statistics results of the Wilcoxon's rank sum test are
shown in Table 3, 5, respectively. In Table 3, 5, the rows of ’1°,’0°,’-1" give the numbers of
that % —value isequal to 1, 0 or -1 [30].

TABLE 2. MINIMIZATION RESULTS OF TWENTY BENCHMARK FUNCTIONS
(ITERATION = 5000 AND D= 20)

function PIG-PSO PSO PIG-LPSO LPSO

£i(x) ABF  3.680e-058 5.012e-012 2.205e-064 4.940e-052
MBF  1.424e-063 2.996¢-013 1.804e-072 1.335¢-053
SD 2.154e-057  2.343¢-011 1.190e-063 2.077e-051
Rank 2 4 1 3

£(x) ABF  1.000e+002 4.381e+003 4.333¢+002  6.500e+003

MBF  3.283e-014  5.014e¢+003 6.010e-011 5.000e+003
SD 7.071e+002  4.105¢+003 3.064e+003  4.917¢+003
Rank 1 3 2 4

£(x) ABF  2.917e-014  2.468e+000 3.627¢-010 6.574e-004
MBF  1.248e-015  2.347e+000 4.033e-011 4.143¢-004
SD 1.098e-013 9.388¢-001 9.371e-010 7.809¢-004
Rank 1 4 2 3

fi(x) ABF  4.851e-002  4.776e-002 2.727e-002 3.346¢-002
MBF  3.074e-002 3.444¢-002 2.337e-002 2.706¢-002
SD 8.949¢-002 3.456¢-002 2.048e-002 2.941¢-002
Rank 4 3 1 2

fi(x) ABF  7.497¢t+001  1.093e+002 5.795e+001  6.928e+001
MBF  6.765¢t+001  1.124e+002 4.825e+001  5.720e+001
SD 3.570e+001  2.270e+001 4.321e+001  3.430e+001
Rank 3 4 1 2

fi(x) ABF  3.332¢+005  4.591e+007 7.726e+005  6.107¢+008
MBF  1.058e+002 4.511e+003 2.865¢+004  2.261e+008
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SD 2.319e¢+006  2.047¢+008 2.986et+006  1.158e+009
Rank 1 3 2 4

fi(x) ABF  1.106e+003  7.549¢+003 1.122e+003 1.163e+004
MBF  4.343e+002  5.938e+003 7.721e+002  6.614¢+003
SD 2.144e+003  6.376e¢+003 9.775e¢+002  1.498¢+004
Rank 1 3 2 4

£i() ABF  -4.410e+002 -4.184¢+002 -4.220e+002  -4.062¢+002
MBF  -4.500e+002 -4.158¢+002 -4.187¢+002  -4.118e+002
SD 1.509e¢+001  1.815e+001 2.450e+001 1.618e+001
Rank 1 3 2 4

5(x) ABF  -1.193e+002 -1.191e+002 -1.192¢+002  -1.190e+002
MBF  -1.193e+002 -1.191e+002 -1.191e+002  -1.191e+002
SD 6.278e-002 8.289¢-002 7.696¢-002 1.021e-001
Rank 1 3 2 4

Jio(x) ABF  1.016e+002  1.037e+002 1.005e+002  1.048e+002
MBF  1.013e+002  1.035e+002 1.008e+002  1.053e+002
SD 2.925¢+000  2.440e+000 2.343e+000  2.496e+000
Rank 2 3 1 4

Avg. 1.7 33 1.6 34

Final 2 3 1 4

TABLE 3. WILCOXON'S RANK SUM TEST RESULTS OF TWENTY BENCHMARK FUNCTIONS

(ITERATION = 5000 AND D= 20)

function PIG-PSO and PSO PIG-LPSO and LPSO
£i(x) p-Value 7.066e-018 7.066e-018

h-Value 1 1

zval -8.613e¢+000 -8.613e+000
£(x) p-Value 2.071e-017 1.699¢-016

h-Value 1 1

zval -8.489¢+000 -8.241e+000
£() p-Value 7.066¢e-018 7.066e-018

h-Value 1 1

zval -8.613e¢+000 -8.613e+000
£i(x) p-Value 8.796e-002 6.391e-001

h-Value 0 0

zval -1.706e+000 -4.688e-001
fi(x) p-Value 5.049¢-008 1.538e-002

h-Value 1 1

zval -5.449¢+000 -2.423e+000
fi(x) p-Value 9.293¢-010 5.008e-008

h-Value 1 1

zval -6.121e+000 -5.451e+000
f(x) p-Value 1.924e-014 7.678e-015

h-Value

1

1


javascript:void(0);

zval -7.655e+000 -7.772e+000
£i(x) p-Value 2.560e-010 8.134e-004

h-Value 1 1

zval -6.323e+000 -3.348e+000
£(x) p-Value 3.692e-005 4.748¢-002

h-Value -1 -1

zval 4.125e+000 1.981e+000
fio(x) p-Value 1.604e-004 9.432¢-013

h-Value 1 1

zval -3.774e+000 -7.138e+000
1 8 8
0 1 1

-1

1

1

TABLE 4. MINIMIZATION RESULTS OF TWENTY BENCHMARK FUNCTIONS
(ITERATION = 5000 AND D= 50)

function PIG-PSO PSO PIG-LPSO LPSO

£i(x) ABF 2.000e+002  3.462¢+003 1.542¢-004 4.600e+003
MBF 2.383e-010 7.423e+001 5.424¢-012 1.741e-011
SD 1.414e+003  5.572e+003 1.089¢-003 6.764¢+003
Rank 2 3 1 4

£2(x) ABF 5.978e+003  6.478¢+004 1.993e+004  6.432¢+004
MBF 4.586e+003  6.386e+004 1.888¢+004  6.043¢+004
SD 6.983e+003  1.538¢+004 1.094e+004  2.014e+004
Rank 1 4 2 3

f(x) ABF 4.912e-001 3.786¢e+001 1.688¢+000  2.375e+001
MBF 4.030e-001 3.846e+001 1.546e+000  2.411e+001
SD 3.060e-001 3.491e+000 7.986¢-001 3.131e+000
Rank 1 3 2 4

fi(x) ABF 5.311e-001 4.488e+001 3.758¢+000  1.448e+001
MBF 1.177e-001 2.489¢+000 1.076e-001 7.396e-003
SD 1.742e+000  5.809¢+001 1.787¢+001  3.349¢+001
Rank 1 4 2 3

£i(x) ABF 3.461e+002  6.175e+002 3.824e+002  4.547¢+002
MBF 3.427e+002  6.111e+002 3.930e+002  4.076¢+002
SD 1.028¢+002  8.302e+001 8.321e+001 1.454e+002
Rank 1 4 2 3

fi(x) ABF 3.325¢+007  1.007¢+010 1.220e+008  2.576e+010
MBF 2.447e+004  6.397¢+009 1.904e+006  1.667¢+010
SD 1.654e+008  1.128e+010 6.045¢+008  2.469¢+010
Rank 1 3 2 4

£(%) ABF 7.436e+003  7.194e+004 2.494e+004  1.228e+005
MBF 6.151e+003  6.774e+004 1.356e+004  8.964¢+004
SD 4.542e¢+003  3.334e+004 3.406e+004  1.030e+005
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Rank 1 3 2 4

£i(x) ABF -4.454e+002  -3.740¢+002 -4.248e+002  -3.650e+002
MBF -4.495e¢+002  -3.803¢+002 -4.433e+002  -3.630e+002
SD 1.444e+001  1.912e+001 3.025¢+001  2.107¢+001
Rank 1 3 2 4

£(x) ABF -1.189¢+002  -1.188¢+002 -1.188e+002  -1.188e+002
MBF -1.188e+002  -1.188e+002 -1.188e+002  -1.188e+002
SD 3.878¢-002 4.623¢-002 4.266¢-002 6.143e-002
Rank 1 2 2 2

So(x) ABF 1.309¢+002  1.422¢+002 1.299e¢+002  1.426e+002
MBF 1.315e+002  1.419¢+002 1.297e+002  1.428e+002
SD 5.608e+000  4.562¢+000 5.356e+000  4.265e+000
Rank 2 3 1 4

Avg. 1.2 3.2 1.8 3.5

Final 1 3 2 4

TABLE 5. WILCOXON'S RANK SUM TEST RESULTS OF TWENTY BENCHMARK FUNCTIONS

(ITERATION = 5000 AND D= 50)

function PIG-PSO and PSO  PIG-LPSO and LPSO
£i(x) p-Value 5.638e-017 3.742¢-003

h-Value 1 1

zval -8.372e+000 -2.899e+000
£(x) p-Value 7.066e-018 7.550e-017

h-Value 1 1

zval -8.613e+000 -8.338e+000
£() p-Value 7.066¢e-018 7.066e-018

h-Value 1 1

zval -8.613e+000 -8.613e+000
fi(x) p-Value 1.241e-015 6.852e-006

h-Value 1 -1

zval -8.000e+000 4.498e+000
fi(x) p-Value 7.123e-017 2.483e-002

h-Value 1 1

zval -8.344e+000 -2.243e+000
fi(x) p-Value 2.071e-017 9.540e-018

h-Value 1 1

zval -8.489¢+000 -8.579e+000
£(x) p-Value 7.066¢e-018 3.257¢-013

h-Value 1 1

zval -8.613e+000 -7.283e+000
£i(x) p-Value 4.250e-017 3.566e-013

h-Value 1 1

zval -8.405¢+000 -7.271e+000
5(x) p-Value 1.944¢-004 1.221e-002
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h-Value -1 -1

zval 3.726e+000 2.505e+000
() p-Value 2.259e-014 5.037e-016
h-Value 1 1
zval -7.634e+000 -8.110e+000
1 8 8
0 0 0
-1 1 2

From the rank of 20 dimensions, the numbers of first-rank for PIG-PSO algorithm and
PIG-LPSO algorithm are six and four. From the rank of 50 dimensions, the numbers of
first-rank for PIG-PSO algorithm and PIG-LPSO algorithm are eight and two. Neither of
PSO algorithm and LPSO algorithm obtains the first-rank. It is obviously that PIG-PSO
algorithm and PIG-LPSO algorithm obtain more number of the first-rank than that of LPSO
algorithm and PSO algorithm. From the average rank and final rank in Tables 2, 4,
PIG-PSO algorithm and PIG-LPSO algorithm all ranks the first and second for 20
dimensions and 50 dimensions. Therefore, for most of benchmark function, the quality of
solutions of PIG-LPSO algorithm and PIG-PSO algorithm are higher than that of LPSO
algorithm and PSO algorithm. From Wilcoxon's rank sum test, the number of % —value=1
for the PIG-LPSO and PIG-PSO algorithm is significantly larger than that for the
PIG-LPSO and PIG-PSO algorithm. It is proved that the PIG-LPSO and PIG-PSO
algorithm perform better than the PSO and LPSO algorithm with 95% certainty. Therefore,
mean personal-best information guided strategy is an effective strategy to improve the PSO
performance.

The evolutions of average fitness on these five functions f,(x), f,(x), fi(x), fi(x),
fio(x) for 20 dimensions are shown in Fig.2(a-e). Here, f£,(x) is a unimodal function,
f,(x) 1s a multimodal function, f,(x) is a rotated function f,(x) is a shifted function and
f,,(x) 1s a unimodal function, of which the minimum is not zero. Specifically, vertical axis

is the logarithm of average fitness. In these figures, it's easy to see that PIG-LPSO
algorithm and PIG-PSO algorithm have a better convergence rate and high accuracy of the
solution.
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4.2.2. Comparisons of PIG-LPSO with other PSO algorithms. In this section, some
recent algorithms are used to evaluate the efficiency of PIG-LPSO algorithm. The
compared PSO variants (APSO [27], FLPSO-QIW [28], FlexiPSO [29], FPSO [30], FIPSO
[31], OLPSO-L [32], HPSO-TVAC [33], and RPPSO [34]) and the detail of its parameters
sittings are shown in Table 6. Four benchmark functions, which are Sphere, Rosenbrock,
Griewank and Ackley. For PIG-LPSO algorithm, population size sets as 30 and function
dimension sets as 50. The maximum iteration sets as 1x10*. The experiment of PIG-LPSO
will independently run 30 times. Other parameters in PIG-LPSO are set to the same as that
in section 4.2.1. The computational results of PIG-LPSO and the results of the compared
algorithms from the paper [31] are shown in Table 7. The average best fitness and standard
deviation are also presented in Table 7. For comparison, the rank, average rank and final
rank of average best fitness for each benchmark function are shown in Table 7.

TABLE 6. SOME WELL-KNOWN PSO VARIANTS

algorithms Topology parameters sittings

APSO Fully connected ©:0.9-04, ¢ +c,: [3.0,4.0], §=[0.05, 0.1], 6, =1.0, o, =0.1
FLPSO-QIW  Comprehensive learning @:0.9-04, ¢:2-15, ¢;: 1-1.5,m=1, P=[0.1,1], K, =0.1, K, =0.001, o, =1, 5, =0
FlexiPSO Fully connected and local ring ~ @:0.5-00, ¢;.¢;,¢;: [0.0,2.0], £=0.1, @=0.01%

FPSO Decreasing 2=0.729, 3¢, =41
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FIPSO Local URing x=0729, 3¢ =41

OLPSO-L Orthogonal learning ®:09-04, c=20G=5
HPSO-TVAC  Fully connected @:09-04, ¢: 2.50.5¢,=05-2.5
RPPSO Random ©:0.9-04, ¢y, =6, ;=3

TABLE 7. EXPERIMENT RESULTS FOR PIG-LPSO AND EIGHT PSO VARIANTS ON TEN
FUNCTIONS. ( ITERATION = 10000 AND D= 50 AND N=30 )

function APSO  FLPSO-QIW FlexiPSO  FPSO FIPSO OLPSO-L HPSO-TVAC RPPSO PIG-LPSO

Sphere best 2.50E-01 2.90E-81 1.78E-04 7.02E+01 2.96E-01 4.86E-33 1.09E-05 1.28E-02  1.99E-90
SD  1.81E-01 5.97E-81 5.23E-05 6.98E+01 8.06E-01 5.15E-33 3.69E-06 2.98E-02  3.12E-90
Rank 7 2 5 9 8 3 4 6 1
Rosenbrock best 4.62E+01  4.22E+01  4.48E+01 5.68E+01 4.77E+01 4.30E+01  4.60E+01  4.76E+01 3.74E+01
SD 1.53E+00  2.39E-01 1.04E+00 7.08E+00 8.44E-01 3.18E+00 5.70E-01 4.30E-01 1.25E+01
Rank 6 2 4 7 9 3 5 8 1
Griewank  best 1.70E-01 5.75E-04  8.34E-03 1.86E+00 1.93E-01 0.00E+00 3.86E-03 7.08E-03  1.77E-15
SD 8.21E-02  2.21E-03 9.48E-03 9.28E-01 3.47E-01 0.00E+00 6.55E-03 1.85E-02  6.77E-14
Rank 7 3 6 9 8 1 4 5 2
Ackley best 6.60E-02  3.43E-14  3.55E-03 1.80E+00 1.70E-01 5.09E-15 1.57E-03 7.47E-01 1.31E-14

SD  2.57E-02 1.07E-14  5.36E-04 1.10E+00 3.38E-01 1.79E-15 1.99E-04 9.17E-01  3.21E-15

Rank 6 3 5 9 7 1 4 8 2
Avg. rank 6.5 2.5 5 8.5 8 2 4.25 6.75 1.5
Final rank 6 3 5 9 8 2 4 7 1

From the rank for each benchmark function, it can be seen that PIG-LPSO performs best
on Sphere, Rosenbrock functions and OLPSO-L performs best on Griewank and Ackley.
However, PIG-LPSO performs the second best on Griewank and Ackley. From average
rank and final rank, we can see that PIG-LPSO ranks first among nine PSO variants.
Therefore, statistics analysis indicates the proposed algorithm have better performance than
the other eight PSO variants on these functions. In general, PSO algorithm with all
personal-best positions guided strategy has a high quality of the solutions and fast
convergence rate.

5. Conclusion. In this paper, a novel personal-best information guided PSO algorithm has
been introduced to enhance the performance. Firstly, all personal-best positions are used to
form a cognition component term with weighted sum of all particles' personal-best fitness.
Then the global version and local version of this term is defined and the modified cognition
component is formed with a chosen strategy of the two terms. Finally, the original
cognition component is replaced by modified cognition component in the basic PSO and
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LPSO algorithm. Ten benchmark functions with 20 and 50 dimensions have been employed
to evaluate the strategy. Experimental results show that personal-best information guided
strategy is an effective strategy to improve PSO’s performance. Compared with several
PSO variants in the literature, the PIG-LPSO algorithm also performs best among these
PSO variants. In conclusion, this strategy enhances the PSO’s performance and is an
available optimization method.
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